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Deriving Properties of the Sampling Distibution

Given a specific statistic it’s sometimes possible to derive properties
of its sampling disitbrution without knowing the population
distribution shape.

I.e. apply properties of expectation and variance to derive
expectation and varinace of sampling distribution.
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Unknown population distribution

Imagine we don’t know the population distribution, but we do know
it has mean, µ, and variance σ2

Population: ∼ (µ, σ2)
Sample: n i.i.d from population
Sample statistic: Sample mean
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Expectation of sampling distribution of sample mean

E ( 1
n (Y1 + Y2 + . . .+ Yn)) =

The sampling distribution of the sample mean is centered around
the population mean.
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Variance of sampling distribution of sample mean

Var( 1
n (Y1 + Y2 + . . .+ Yn)) =

The variance of the sampling distribution of the sample mean is
smaller than the population variance (n > 1), and decrease with
increasing n.
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More properties of sample means

Weak Law of Large Numbers (WLLN)

For i.i.d samples from a population with mean µ:

• As the sample size increases to infinity (n→∞), the sample
mean converges in probability to the population mean, µ.

• Probability of sample mean being some small distance from µ

goes to zero as sample size increases

We write:
Y →p µ
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Simulating Sampling Distributions
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Simulating Sampling Distributions

Just knowing mean and variance of the sampling distribution isn’t
generally enough.

If we know or hypothesize a population distribution we can simulate
to obtain the sampling distribution for any statistic.
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Simulation Set Up

Specify a known or hypothesized population distribution.

Repeat B times:

1. Draw sample of size n from the population distribution
2. Calculate the desired sample statistic from the sample
3. Record the value of sample statistic

Get B sample statistics (from B samples)

For large B, the distribution of the B sample statistics approximates
the true sampling distribution. Why?
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Your Turn

Let X be a random variable with an unknown distribution.

I obtain X1, . . . ,X10 i.i.d samples from the distribution. I get:

5, 3, 7, 4, 4, 3, 7, 2, 7, 3

How would you estimate P(X ≤ 5)?
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Empirical Distribution Function

The empirical cumulative distribution function (ECDF) for a sample
X1, . . . ,Xn is:

F̂ (x) = 1
n

n∑
i=1

111 {Xi ≤ x}

Intuition: the ECDF at x , is the sample proportion of observed
values less than or equal to x .
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Empirical Distribution Function

F̂ (x) is a sample mean of the random variable 111 {Xi ≤ x} therefore
the Weak Law of Large Numbers applies.

E [111 {Xi ≤ x}] = F (x)

F̂ (x)→p F (x)

So, the ECDF converges to the true cumulative distribution
function.

In practice this means we can use our simulated values to
approximate the distribution of the sampling distribution.
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Example: Commute times

Population: ST551 students present on first day of class Fall 2017
Variable of interest: Commute time in minutes
Parameter: Population mean

What’s the sampling distribution for the sample mean of
samples of size 5?

What’s the probability the sample mean from a sample of
size 5 is less than 10 minutes?
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Example: Commute times

Specify a known or hypothesized population distribution.

Repeat B times:

1. Draw sample of size n from the population distribution
2. Calculate the desired sample statistic from the sample
3. Record the value of sample statistic

Get B sample statistics (from B samples)
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Example: Commute times

Population: all commute times from index cards

Repeat B times:

1. Draw 5 cards at random
2. Find mean commute time of sample
3. Record the value

Get B sample statistics (from B samples)
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Example: Commute times

Population: class_data$commute_times

Repeat n_sim times:

1. one_sample <- sample(class_data$commute_times,
size = 5)

2. mean(one_sample)

3. Record mean(one_sample)
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Example: Commute times

library(tidyverse)
n <- 5
n_sim <- 1000

# Generate many samples
samples <- rerun(.n = n_sim,

sample(class_data$commute_time, size = n))

# Do something to each sample
sample_means <- map_dbl(samples, ~ mean(.x))
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Example: Commute times

Examining the distribution of the simulated sample statistics

# Sampling dist. histogram
ggplot() +

geom_histogram(aes(x = sample_means), binwidth = 1) +
theme_bw() +
labs(x = "Sample mean commute time",

title = "Sampling Distribution",
subtitle = "for sample mean and sample size, n = 5")
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Example: Commute times

Using the simulated sample means to estimate a probability.

What’s the probability the sample mean from a sample of
size 5 is less than 10 minutes?

# Estimate a specific probability
mean(sample_means < 10)

## [1] 0.129
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Can’t I just write a for loop?

Yes, you could write a for loop. I almost never do anymore, because
a functional style results in lots less book keeping and code that
more clearly expresses the intent rather than the implementation.

In general:

• There are lot’s of ways to get anything done in R.
• I’ll show you one way (that comes from a lot of experience and

recent innovations).

You don’t have to use my way.

You should always aim for code that: 1. Is correct 2. Is clear
(i.e. understandable to a fellow human being)

20



Approximate Sampling Distribution
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Central Limit Theorem (CLT)

If the population distribution of a variable X has population mean µ
and (finite) population variance σ2, then the sampling distribution
of the sample mean becomes closer and closer to a Normal
distribution as the sample size n increases.

We can write:
X ∼̇N

(
µ,
σ2

n

)
for large values of n, where the symbol ∼̇ means approximately
distributed as.
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