Approximate Binomial Test

ST551 Lecture 12

Charlotte Wickham 2017-10-16

Next Friday Oct 27th in class.

No outside materials except one double-sided page of your own notes and a calculator.

I'll be putting up a study guide and practice midterm by Friday.

Two options to vote on:

- 1. No homework due next Thursday
- 2. No homework due the week after the midterm won by popular vote

Finish the CI for last week's worksheet

- "Exact" because it uses the *exact* sampling distribution of the sum of Y_i .
- The actual Type I error rate will never be more than α , but may be substantially less (i.e. conservative).
- You can invert the test to get a confidence interval, but there isn't an easy closed form for the interval.

Exact Binomial Test: In R

```
binom.test(x = 7, n = 12, p = 0.4)
```

```
##
## Exact binomial test
##
## data: 7 and 12
## number of successes = 7, number of trials = 12, p-value = 0.2417
## alternative hypothesis: true probability of success is not equal to
## 95 percent confidence interval:
## 0.2766697 0.8483478
## sample estimates:
## probability of success
## 0.5833333
```

binom.test(x = 7, n = 12, p = 0.4)

- x count of 1's, i.e. $\sum_{i=1}^{n} Y_i$
- n sample size
- p p_0 , the hypothesized population proportion

The reported CI is a Clopper-Pearson confidence interval, based on the exact distribution but with equal tails (i.e. try to get $\alpha/2$ in each tail).

Approximate Binomial Test

Use fact that:

$$\overline{Y} \dot{\sim} N\left(E(Y), \frac{Var(Y)}{n}\right) = N\left(p, \frac{p(1-p)}{n}\right)$$

Leads to the Z-test where:

$$Z(p_0) = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

 $\hat{p} = \overline{Y} =$ sample proportion

Null distribution of $\hat{\rho}$

Approximate distribution of sample proportion

Null distribution of $\hat{\rho}$

Your turn

library(openintro)
census %>%
group_by(sex) %>%
summarise(n = n())

##	#	А	tibb	Le:	2	х	2
##			sex		I	ı	
##		<1	fctr>	<i< td=""><td>nt></td><td>></td><td></td></i<>	nt>	>	
##	1	Fe	emale	2	232	2	
##	2		Male	2	268	3	

Find:

- 1. p̂
- 2. The Z-statistic, for the test of $H_0: p = 0.5$

Your turn

A confidence interval?

Need to invert test, i.e. find all p_0 such that:

$$|Z(p_0)| = \left| \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \right| > z_{1-\alpha/2}$$

lt's hard...

Instead use:

$$\hat{p} \pm z_{1-\alpha_2} \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

Based on inverting a (Wald) test with statistic:

$$Z_w(p_0) = \frac{\hat{p} - p_0}{\sqrt{\hat{p}(1-\hat{p})/r_0}}$$

Asymptotically equivalent to $Z(p_0)$ (happens to be the Score test)

Your turn

library(openintro)
census %>%
group_by(sex) %>%
summarise(n = n())

##	#	А	tibb	Le:	2	х	2
##			sex		I	ı	
##		<1	fctr>	<i< td=""><td>nt></td><td>></td><td></td></i<>	nt>	>	
##	1	F€	emale	2	232	2	
##	2		Male	2	268	3	

Find:

1. 95% CI for p.

A score test, $Z(p_0)$, might not agree with a Wald interval. Learn to live with it...or don't calculate things by hand.

prop.test(x = 232, n = 232 + 268, p = 0.5, correct = FALSE)

##

1-sample proportions test without continuity correction
##

```
## data: 232 out of 232 + 268, null probability 0.5
```

```
## X-squared = 2.592, df = 1, p-value = 0.1074
```

```
## alternative hypothesis: true p is not equal to 0.5
```

- ## 95 percent confidence interval:
- ## 0.4207282 0.5078208
- ## sample estimates:
- ## p
- ## 0.464

prop.test(x = 232, n = 232 + 268, p = 0.5, correct = FALSE)

Equivalent to $Z(p_0)$ and inverts to get confidence interval (i.e. p-value and CI will agree).

Reports X-squared, χ^2 statistic, take square root to get Z

When to use the Approximate Binomial test?

Compare to:

binom.test(x = 232, n = 232 + 268, p = 0.5)

```
##
##
   Exact binomial test
##
## data: 232 and 232 + 268
## number of successes = 232, number of trials = 500, p-value =
## 0.1174
## alternative hypothesis: true probability of success is not equal to
## 95 percent confidence interval:
## 0.4196128 0.5088153
## sample estimates:
## probability of success
##
                    0.464
```

When to use the Approximate Binomial test?

The approximation isn't great for small expected counts.

OK to use the approximation if: $np_0 > 5$ and $n(1 - p_0) > 5$ (Or something similar) Use Binomial test as a way to look at population median.