ST551 Lecture 23

Charlotte Wickham

2017-11-15

Finish last time's slides Did you cat breakfast this Whose one prefess cets. spildie n bit : poutter boisét and eggest breakfast? yes has O/1 O do you peter cets or dogs? eat/dog

Imagine now that our two samples of Bernoulli populations aren't independent, but paired in some way.

$$Y_i, \ldots, Y_n \sim \text{Bernoulli}(p_Y)$$

$$X_i, \ldots, X_n \sim \text{Bernoulli}(p_X)$$

but (Y_i, X_i) are paired.

Examples:

- n subjects with a disease, and n without a disease are sampled then matched (based on demographic factors), response is presence of some risk factor
- Sibling (or twin) studies: n pairs of related people where one falls in one group, and the other falls in the other group, observe some binary response on every person.
- Binary before and after measurements on the same person

Gather sample of n = 40 voters.

Before debate: Will you vote for candidate A?

After debate: Will you vote for candidate A?

			_
subject	before	after	_
1	1	1	<u></u>
2	1	0	~
3	1	0	
3 4	1	1	
5	1	1	
6	1	0	
<u> </u>			•
•			
ø			

Just a 2×2 table?

How to analyse?

Option 1: Treat like paired two sample data and do a paired t-test

Option 2: McNemar's test

Paired t-test

Mbefore = Mafter

Null hypothesis: $H_0: p_{\text{before}} = p_{\text{after}}$

Look at (per voter) differences:

subject	befor	e .	after	diff
1	1		1	0
2	1		0	-1
3	1		0	_1
4	1		1	0
5	1		1	0
6	1		0	-1
Ø Ø	tab(e of	diffe	serces
40	-1	0	1	
	9	20	11	
ala ser cua	1 from		,	

8

Paired t-test calculations

$$\overline{D} = \frac{1}{n} \left((-1 \times 9) + (0 \times 20) + (1 \times 11) \right) = \frac{b - c}{n} = \frac{2}{40} = 0.05$$

$$s_D^2 = \frac{1}{n-1} \left(9(-1-\overline{D})^2 + 20(0-\overline{D})^2 + 11(1-\overline{D})^2 \right)$$
variance
of differences
$$= \frac{1}{n-1} \left(c + b - \frac{(b-c)^2}{n} \right)$$

$$= \frac{1}{40-1} \left(9 + 11 - \frac{(11-9)^2}{n} \right)$$

$$= 0.51$$

Paired t-test calculations

```
##
    One Sample t-test
##
##
          df$diff
## data:
## t = 0.4427, df = 39, p-value = 0.6604
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
   -0.1784514 0.2784514
## sample estimates:
## mean of x
        0.05
##
```

McNemar's test

Null hypothesis: $H_0: p_{before} = p_{after}$

Conditions on the number of discordant pairs, b + c.

	after		
	0	1	
before to 0	12	11	
vote A 1	9	8	

Under Null hypothesis, we expect the number of discordant pairs (e.g. people who change their minds during debate) should be equally split between b and c.

McNemar's test

Conditional on b + c,

$$b \sim \mathsf{Binomial}(b+c,0.5)$$

Do, one sample Z-test for proportions, leads to

$$Z = \frac{b-c}{\sqrt{b+c}} \dot{\sim} N(0,1)$$
 under null hypothesis

(sometimes people square this statistic, and compare to χ_1^2)

Example: McNemar's

$$Z = \frac{b-c}{\sqrt{b+c}} = \frac{11-9}{\sqrt{11+9}} = 0.45$$

Compare to N(0,1)

Final points

- McNemar's test is equivalent to the paired t-test, in the sense that the two test statistics are monotone transformations of each other.
- For large sample sizes, the two test statistics get closer and closer to the same value: asymptotically equivalent.