Properties of difference in sample means ST551 Lecture 18

Charlotte Wickham

2017-11-01

Let Y_1, \ldots, Y_n be an i.i.d sample of size n from a population with mean μ_Y and variance σ_Y^2 , and let X_1, \ldots, X_m be an i.i.d sample of size m from a population with mean μ_X and variance σ_X^2 .

The samples are drawn indpendently of each other.

Properties of difference in sample means

Q1 Using the Central Limit Theorem, find the approximate distribution of \overline{Y} and \overline{X} for large sample sizes. $\overline{Y} \dot{\sim}$

 $\overline{X} \stackrel{.}{\sim}$

Q2 \overline{Y} and \overline{X} are independent. Justify this fact.

Q3 Derive the distribution of $\overline{Y} - \overline{X}$. A useful fact (from earlier in the quarter) is provided in the box below. If $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$, independent of X. Then,

$$Z = X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

 $\overline{Y} - \overline{X} \stackrel{.}{\sim}$

Q4 Using your result from Q3, suggest a test statistic for testing the null hypothesis $H_0: \mu_Y - \mu_X = \delta_0$ that would have a (approximately) standard Normal distribution, when the null hypothesis is true.

1